

Back Turning with 3D Molded Chipbreaker

TKFB-GQ Chipbreaker

Good Chip Evacuation and Excellent Surface Finish with 3D Molded Chipbreaker

Reduced Cycle Time by Increasing Depth of Cut Capabilities
PR1535 Extends Tool Life in Stainless Steel Machining

TKFB-GQ Chipbreaker

Good Chip Evacuation and Excellent Surface Finish with 3D Molded Chipbreaker Reduced Cycle Time by Increasing Depth of Cut Capabilities

1

Good Chip Evacuation with 3D Molded Chipbreaker

Original 3D Molded Chipbreaker with Two Functions

Chip Control Comparison (Turning) (In-house Evaluation)

Prevents Entanglement with Tightly Curled Chips Stable Chip Control Over Wide Range of Cutting Conditions

S45C

	GQ	Chipbrea	ker	Compe	etitor C (M	lolded)
(ap)	0.03 mm/rev	0.05 mm/rev	0.07 mm/rev	0.03 mm/rev	0.05 mm/rev	0.07 mm/rev
4 mm Competitor (3.5)	0	0	0		A CONTRACTOR OF THE PARTY OF TH	Chip Clogging
3 mm		9	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- Washington	The state of the s
2 mm				go de la constanta	Lostable Chip Control	Contract Con

Cutting Conditions: Vc = 100 m/min, Wet

SUS304

	GQ	Chipbrea	ker	Competitor D (Molded)					
(f)	0.02 mm/rev	0.04 mm/rev	0.06 mm/rev	0.02 mm/rev	0.04 mm/rev	0.06 mm/rev			
4 mm Competitor (3.5)	0	0	<u></u>		× Inse	rt Fracture			
3 mm	Ç.v.	\bigcup		T.	X Chip Clogging				
2 mm	Linstable	Chip Control	O	△Unstable	Chip Control				

Cutting Conditions: Vc = 80 m/min, Wet

Excellent Surface Finish by Preventing Chip Crunching and Clogging

Reduced Cycle Time with GQ Chipbreaker by Increasing Depth of Cut Capabilities

Surface Finish Comparison (In-house Evaluation)

Surface Finish Comparison (In-house Evaluation)

Grooving Excellent Surface Finish at Large Depths of Cut

Flange Finish

ар	4 mm	3 mm	2 mm		
GQ Chipbreaker	$Rz = 2.63 \mu m$	$Rz = 2.92 \mu m$	Rz = 2.41 μm		
Competitor F (Ground)	Rz = 27.88 μm	Rz = 31.23 μm	Rz = 25.56 μm		

Cutting Conditions: Vc = 100 m/min, f = 0.02 mm/rev, Wet Workpiece: S45C

Turning Prevents Chip Clogging and Entanglement at High Feed Rates

Surface Finish During External Turning (In-house Evaluation)

 $Cutting \ Conditions: \ Vc = 100 \ m/min \ (S45C), \ 80 \ m/min \ (SUS304) \ f = 0.03 - 0.07 \ mm/rev \ (S45C), \ 0.02 - 0.06 \ mm/rev \ (SUS304) \ Wet \ (S45C), \ 0.02 - 0.06 \ mm/rev \ (SUS304) \ Wet \ (S45C), \ 0.02 - 0.06 \ mm/rev \ (S45C), \ 0.02 - 0.02 \ mm/rev \ (S45C), \ 0.02 - 0.02 \ m$

MEGACOAT NANO PR1535

Combination of tough substrate and special nano layer coating enables long tool life and stable machining of stainless steel

- Toughening with a New Cobalt Mixing Ratio

 ** Comparison with our Conventional Grade
- UP
 23%
 Fracture Toughness*

Improved Stability by Optimization and Homogenization of the Particle Matrix

3 Long Tool Life and Stable Machining with MEGACOAT NANO

Cracking Comparison by Diamond Indentor (In-house Evaluation)

Long Cracks Short Cracks

Wear Resistance Evaluation (In-house Evaluation)

Cutting Conditions: $n = 1,273 \text{ min}^{-1}$ (Vc = 80 m/min), f = 0.025 mm/rev, Wet (Oil Base) Workpiece: SUS304 (\emptyset 20)

Fracture Resistance Comparison (In-house Evaluation)

Cutting Conditions: Vc = 80 m/min, f = 0.12 mm/rev, Wet (Water Soluble) Workpiece: SUS304 (ø50, 10 mm 4 slots)

Case Studies Bolt SUM23 Shaft SUJ2 Vc = 90 m/minVc = 50 m/minap = 2 mmap = 2 mm $\dot{f} = 0.025 \text{ mm/rev (Grooving)}$ f = 0.03 mm/rev (Grooving)f = 0.04 mm/rev (Turning) 3 f = 0.05 mm/rev (Turning) Wet TKFB12R28015-GQ TKFB12R28015-GQ PR1225 PR1225 Number of Workpieces Number of Workpieces **Tool Life** GQ Chipbreaker 5,000 pcs/edge 500 pcs/edge PR1225 PR1225 Competitor M Competitor L 2,500 pcs/edge Competitor M TKFB-GQ Chipbreaker (PR1225) showed 2 times longer tool TKFB-GQ Chipbreaker (PR1225) maintained smoother chip life compared to Competitor L. control compared to Competitor M. Stable machining with minimal deflection was achieved. (User Evaluation) (User Evaluation)

Toolholder Dimensions

	St	ock	Dimensions (mm)							Spare			
										Clamp Screw Wrench			
Description	R	L	H1 = h	В	L1	L2	F1	T	Shape			Applicable Inserts	
KTKF ^R / _L 1010JX-12	•	•	10	10	120	15	10	6					
1212JX-12	•	•	12	12	120	_	12	6				TKFB12 ^R / ₁	
1616JX-12	•	•	16	16	120	_	16	6				TKI D12 /[
2020JX-12	•	•	20	20	120	_	20	6		SB-4590TRWN	LTW-10S		
KTKF ^R / _L 1010JX-16	•	•	10	10	120	20	10	8	Fig. 1				
1212JX-16	•	•	12	12	120	_	12	8] 11g. 1			TKFB16 ^R / _L	
1616JX-16	•	•	16	16	120	_	16	8				INI DIO /[
2020JX-16	•	•	20	20	120	_	20	8					
KTKF ^R / _L 1212F-12	•	•	12	12	85	_	12	6				TKFB12 ^R / _L	
KTKF ^R / _L 1212F-16	•	•	12	12	85	_	12	8				TKFB16 ^R / _L	
KTKFL 1216JX-12		•	12	16	120	_	16	6	Fig. 2			TKFB12L	
1620JX-12		•	16	20	120	_	20	6	119.2			INI DIZL	

 $\label{thm:continuous} \mbox{Dimension T shows the distance from the Toolholder to the cutting edge}$

: Standard Stock

											1					
	Usage Classification			Р	Cark	on Ste	el / Allo	y Steel	•	0	Q					
	Usage Classification				М	M Stainless Steel			el	Q	•	G				
					V		Gray	Cast Iro	n							
				l I No			Continuous Light Interruption / 1st Chaica Nodular Cast Iron					ron				
	: Continuous - Light Interruption / 1st Choice				Continuous - Light Interruption / 2nd Choice N			Non-ferrous Material				(5)	Applicable			
	•: Continuous / 1st Choice			c	, Hea		Heat-Resistant Alloy			•	9	Toolholder				
Applicable Inserts	: Continuous / 2nd Choice)		Titani	um Allo	у		•					
Applicable litserts					Н	ŀ	Hardene	ed Mate	erial							
Shape				Dime	ensions (mm) Angle (°)				Angle (°)	MEGACOAT NANO	MEGACOAT NANO	MEGACOAT				
знаре	Description	W	a	В	R(rε)	T	Н	ød	θ	PR1425	PR1535	PR1225				
5 B od	TKFB 12R28005-GQ	2.8	1.5	4.6	0.05	3.0	8.7	5.2	74°	•	•	•	KTKFR			
≥	12R28015-GQ	2.8	1.5	4.6	0.15	3.0	8.7	5.2	74°	•	•	•	12			
	TKFB 16R38005-GQ	3.8	1.8	6.3	0.05	4.0	9.5	5.2	72°	•	•	•	KTKFR			
19.5	16R38015-GQ	3.8	1.8	6.3	0.15	4.0	9.5	5.2	72°	•	•	•	16			

		Recommended Insert Grade								
14	Jayloniaga		MEGACO	MEGA	Remarks					
Workpiece		PR1	425	PR1	535	PR1	hemarks			
		Grooving	Traversing	Grooving	Traversing	Grooving	Traversing			
Carbon Steel /	Cutting Speed (m/min)	★ 80	- 200	☆ 60	– 150	☆ 60				
Alloy Steel	Feed (mm/rev)	0.01 - 0.04	0.02 - 0.15	0.01 - 0.04	0.02 - 0.15	0.01 - 0.04	0.02 - 0.15	10/		
Ctainless Ctaal	Cutting Speed (m/min)	☆ 60	- 150	★ 60	- 130	☆ 60	- 130	Wet		
Stainless Steel	Feed (mm/rev) 0.01 – 0		0.02 - 0.1	0.01 - 0.03	0.02 - 0.1	0.01 - 0.03	0.02 - 0.1			

Inserts Identification System (See Table 1)

Table 1 (Insert Width)

Applicable Range (Steel)

